Partitioning of Crown Ether Complexed Univalent Metal Dichloropicrates between Water and 1,2-Dichloroethane at 298 K . Thermodynamic Representation

Izaak M. Kolthoff ${ }^{\dagger}$ and Miran K. Chantooni, Jr.*
Department of Chemistry, University of Minnesota, Smith \& Kolthoff Halls, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431
Wen-Ji Wang ${ }^{\ddagger}$
Department of Nuclear Science, Fudan University, Shanghai, People's Republic of China

Abstract

The extraction constant of silver and cesium dichloropicrate $\left(\mathrm{MPiCl}_{2}\right)$ between water and 1,2 -dichloroethane in the presence of 18 -crown- 6 or dibenzo-18-crown-6 (L) has been expressed in terms of the Gibbs free energy of transfer of M^{+}and PiCl_{2}^{-}, the association constant of $\mathrm{LMPiCl}_{2}\left(K_{\mathrm{A}}\left(\mathrm{LMPiCl}_{2}\right)\right.$), and the stability constant of $\mathrm{LM}^{+}\left(K_{\mathrm{f}}\left(\mathrm{LM}^{+}\right)\right.$) in the organic phase. This has been verified experimentally by partitioning MPiCl_{2} alone. Using suitable extrathermodynamic assumptions, $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{PiCl}_{2}{ }^{-}\right)=3.8 \mathrm{~kJ}$ mol${ }^{-1}$, as compared to $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Pi}^{-}\right)$ $=-7.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This imparts favorable extractability to LMPiCl_{2}. In addition, sodium, potassium, and thallium dichloropicrate extraction equilibria involving the above crown ethers are reported.

Introduction

About 20 years ago, it was found that uncomplexed alkalimetal salts, MX, having large lipophilic anions, i.e., picrate (Pi^{-}) (1), (2,4,6,2', $4^{\prime}, 6^{\prime}$-hexanitrodiphenyl)aminate (2), tetraphenylborate (BPh_{4}^{-}) (3), and even perchlorate (3) can be readily extracted from water (W) into nitrobenzene. Ion pairing occurs to a varying extent in both phases. When a neutral complexing ligand, L, is added to the "immiscible" organic solvent, M^{+}is transformed into a lipophilic cation, LM^{+}, thereby greatly enhancing the extractability of the above salts (4). Kyrš et al. (5) related the extraction constant, $K_{\text {ex }}$, to the Gibbs free energy of transfer of M^{+}and X^{-}from the organic solvent saturated with water, $\mathrm{O}(\mathrm{W})$, to water saturated with the organic solvent, $\mathrm{W}(0)$, by eq 1 . The symbol $y^{ \pm}$

$$
\begin{align*}
& \log K_{\mathrm{ex}}^{\prime}=\log \left\{\left[\mathrm{LM}^{+}\right]_{\mathrm{O}(\mathrm{~W})}\left[\mathrm{X}^{-}\right]_{\mathrm{O}(\mathrm{~W})}\left(y^{ \pm}\right)^{2}\right\}- \\
& \log \left\{[\mathrm{L}]_{\mathrm{O}(\mathrm{~W})}\left[\mathrm{M}^{+}\right]_{\mathrm{W}(\mathrm{O})}\left[\mathrm{X}^{-}\right]_{\mathrm{W}(\mathrm{O})}\right\}=\log K_{\mathrm{f}}\left(\mathrm{LM} \mathrm{M}^{+}\right)+ \\
& \Delta G_{\mathrm{tr}}^{\circ}\left(\mathrm{M}^{+}+\mathrm{X}^{-}\right)_{\mathrm{O}(\mathrm{~W}) \rightarrow \mathrm{W}(\mathrm{O})} / R T \ln 10 \tag{1}\\
& K_{\mathrm{f}}\left(\mathrm{LM}^{+}\right)=\left[\mathrm{LM}^{+}\right]_{\mathrm{O}(\mathrm{~W})} /[\mathrm{L}]_{\mathrm{O}(\mathrm{~W})}\left[\mathrm{M}^{+}\right]_{\mathrm{O}(\mathrm{~W})} \\
& \quad y\left(\mathrm{LM}^{+}\right)=y\left(\mathrm{M}^{+}\right) \tag{2}
\end{align*}
$$

denotes the Debye-Hückel mean ionic activity coefficient in $\mathrm{O}(\mathrm{W})$, that in water being close to unity. Ion pairing has been neglected in both solvents. In organic solvents of low dielectric permittivity the extracted species is primarily the ion pair LMX, designated here as uncharged. Extraction equilibria of MX in the absence and presence of L, as represented by Scheme I for the immiscible solvents W and 0 , has been discussed in an excellent review article (6).
The quantities $D, K_{\text {ex }}$, and $P(\mathrm{~L})$ are defined customarily as

$$
\begin{gather*}
D=[\mathrm{MX}]_{\mathrm{O}(\mathrm{~W})} /\left[\mathrm{M}^{+}\right]_{\mathrm{W}(\mathrm{O})}\left[\mathrm{X}^{-}\right]_{\mathrm{W}(\mathrm{O})} \tag{3}\\
K_{\mathrm{ex}}=[\mathrm{LMX}]_{\mathrm{O}(\mathrm{~W})} /[\mathrm{L}]_{\mathrm{O}(\mathrm{~W})}\left[\mathrm{M}^{+}\right]_{\mathrm{W}(\mathrm{O})}\left[\mathrm{X}^{-}\right]_{\mathrm{W}(\mathrm{O})} \tag{4}\\
P(\mathrm{~L})=[\mathrm{L}]_{\mathrm{O}(\mathrm{~W})} /[\mathrm{L}]_{\mathrm{W}(\mathrm{O})} \tag{5}
\end{gather*}
$$

In this case the extraction constants D and $K_{\text {ex }}$ can be

[^0]
Scheme I

expressed in terms of $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{M}^{+}+\mathrm{X}^{-}\right)_{\mathrm{O}(\mathrm{W}) \rightarrow \mathrm{W}(0)}$ by eqs 6 and 7. Yoshio and Noguchi (6) observed that K_{ez} / D between

$$
\begin{array}{r}
\log K_{\mathrm{ex}}=\log K_{\mathrm{A}}(\mathrm{LMX})_{\mathrm{O}(\mathrm{~W})}+\Delta G_{\mathrm{tr}}^{\circ}\left(\mathrm{M}^{+}+\mathrm{X}^{-}\right)_{\mathrm{O}(\mathrm{~W}) \rightarrow \mathrm{W}(\mathrm{O})} / \\
R T \ln 10+\log K^{\mathrm{f}}\left(\mathrm{LM}^{+}\right)_{\mathrm{O}(\mathrm{~W})} \tag{6}
\end{array}
$$

$\log \left(K_{\mathrm{ex}} / D\right)=\log K_{\mathrm{A}}(\mathrm{LMX})_{\mathrm{O}(\mathbb{W})}-$
$\log K_{\mathrm{A}}(\mathrm{MX})_{\mathrm{O}(\mathrm{W})}+\log K^{\mathrm{f}}\left(\mathrm{LM}^{+}\right)_{\mathrm{O}(\mathrm{W})}$
nitrobenzene and water for DB-18-cr-6MPi (dibenzo-18-crown-6 = DB-18-cr-6) correlates linearly with K_{f} (DB-18-$\mathrm{cr}-6 \mathrm{M}^{+}$) in propylene carbonate (PC).

In this study, 1,2-dichloroethane (DCE) was chosen because its polarity allows good extractability of the uncomplexed dichloropicrates. Values of K_{ex} between water and DCE of MPiCl_{2} complexed with 18 -crown-6 (18-cr-6) or with DB-$18-\mathrm{cr}-6$ were estimated, M being $\mathrm{Na}, \mathrm{K}, \mathrm{Cs}, \mathrm{Tl}$, or Ag and $\mathrm{PiCl}_{2}{ }^{-}=$dichloropicrate. The constants $K_{\mathrm{A}}\left(\mathrm{MPiCl}_{2}\right)$ and $K_{\mathrm{A}}\left(\mathrm{LMPiCl}_{2}\right)$ in DCE and in $\mathrm{DCE}(\mathrm{W})$ were determined conductometrically, and $K^{f}\left(\mathrm{LAg}^{+}\right)$was determined potentiometrically in DCE(W) with the Ag electrode. To establish the internal consistency of Scheme I, resulting values of $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Ag}^{+}+\mathrm{PiCl}_{2}{ }^{-}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{W}(\mathrm{DCE})}$ and $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Cs}^{+}+\mathrm{PiCl}_{2}{ }^{-}\right)$$\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{W}(\mathrm{DCE})$ calculated from eq 6 were compared with those derived from partitioning uncomplexed AgPiCl_{2} and independently from the solubility products of AgPiCl_{2} in W (DCE)

Table I. Association Constants and Solubility Products ($\Delta G_{i}^{\circ}=-\boldsymbol{R T} \ln \boldsymbol{K}^{\mathbf{D} \boldsymbol{p}}$) of Uncomplexed Silver and Cesium Salts on the Molar Scale at 298 K

salt	solvent	$\begin{gathered} \Lambda_{0} / \\ \left(\mathrm{S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} K_{\mathrm{A}} / \\ \left(\mathrm{mol}^{-1} \mathrm{dm}^{3}\right) \end{gathered}$	conduct. of satd soln/ $\left(\mathrm{S} \mathrm{~cm}^{-1}\right)$	solubility/ (mol dm ${ }^{-3}$)	$y^{+} y^{-}$	$\begin{gathered} \Delta G^{\circ} / \\ \left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$
AgClO_{4}	DCE	$75.9{ }^{\text {a }}$	$1.6 \times 10^{8}{ }^{\text {d }}$	6.86×10^{-6}	6.94×10^{-3}		
AgClO_{4}	DCE(W)	$80.9{ }^{\text {a }}$	9.1×10^{6}				
AgPiCl_{2}	DCE	$52.7{ }^{\text {a }}$	$1.7 \times 10^{7 d}$	5.58×10^{-7}	1.30×10^{-3}	0.848	57.3
AgPiCl_{2}	DCE(W)	$60.8{ }^{\text {a }}$	7.2×10^{6}	1.19×10^{-6}	2.28×10^{-3}	0.809	54.1
AgPiCl_{2}	PC	23.81	7.8×10^{1}	7.25×10^{-4}	0.127	0.780	16.9
AgPiCl_{2}	W	91.52	<5	4.27×10^{-3}	0.0605	0.655	15.0
AgPiCl_{2}	W(DCE)	$91.52^{\text {b }}$	<5	4.85×10^{-3}	0.0676	0.639	14.3
CsPiCl_{2}	DCE	$54.2{ }^{\text {c }}$		9.06×10^{-7}		0.813	54.8
CsPiCl_{2}	DCE(W)	$62.4{ }^{\text {c }}$	2.4×10^{6}	7.02×10^{-7}	2.60×10^{-4}	0.847	56.8
CsPiCl_{2}	W	106.9	<5	1.15×10^{-3}	0.0125	0.903	22.5
$\begin{aligned} & 2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{CsPiCl}_{2} \\ & 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	W (DCE)	$106.9^{\text {b }}$	<5	1.15×10^{-3}	0.0126	0.902	22.3

${ }^{a}$ From $\lambda_{0}(\mathrm{Ag}+)=36.0 \mathrm{~S} \mathrm{~cm}{ }^{2} \mathrm{~mol}^{-1}$ in DCE and $37.7 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in $\mathrm{DCE}(W)$ [estimated from the product $\eta \lambda_{0}\left(\mathrm{Ag}^{+}\right)=0.0286 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ Pa s in PC (Courtot-Coupez, J.; L'Her, M. C.R. Acad. Sci., Ser. C 1970, 357)] and $\eta \lambda_{0}\left(\mathrm{ClO}_{4}{ }^{-}\right)$or $\eta \lambda_{0}\left(\mathrm{PiCl}_{2}{ }^{-}\right) .{ }^{b} \Lambda_{0}(\mathrm{MPiCl} 2)$ in W(DCE) assumed the same as in W. ${ }^{c}$ From $\lambda_{0}\left(\mathrm{Cs}^{+}\right)=37.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in DCE and $39.3 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in DCE (W), estimated from $\eta \lambda_{0}\left(\mathrm{Cs}^{+}\right)=0.0298 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ $\mathrm{Pa} s$ in acetonitrile [Springer, C. H.; Coetzee, J. F.; Kay, R. L. J. Phys. Chem. 1969, 73, 471] and $\lambda_{0}\left(\mathrm{PiCl}_{2}{ }^{-}\right)$. ${ }^{d}$ Triple ion also present, $K^{f} \approx$ $1 \times 10^{2} \mathrm{~mol}^{-1} \mathrm{dm}^{3}$.
and in $\mathrm{DCE}(\mathrm{W})$. The latter two experiments were performed with CsPiCl_{2}. Free energies of transfer of single ions in this study were derived from those of $\Delta G^{\circ}{ }_{t r}\left(\mathrm{Ag}^{+}\right)_{\mathrm{DCE} \rightarrow \mathrm{DCE}}(\mathrm{W}), \mathrm{PC}$ and $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Ag}^{+}\right)_{\mathrm{PC} \rightarrow \mathrm{W}}$. The first is based on the Lejaille and Bessiére extrathermodynamic assumption (7):

$$
\begin{equation*}
\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{C} 222 \mathrm{Ag}^{+}\right)_{\mathrm{R} \rightarrow \mathrm{~S}}=\Delta G_{\mathrm{tr}}^{\circ}(\mathrm{C} 222)_{\mathrm{R} \rightarrow \mathrm{~S}} \tag{8}
\end{equation*}
$$

or

$$
\begin{align*}
& \log K_{\mathrm{f}}\left(\mathrm{C} 222 \mathrm{Ag}^{+}\right)_{\mathrm{S}}-\log K^{\mathrm{f}}\left(\mathrm{C} 2222 \mathrm{Ag}^{+}\right)_{\mathrm{R}}= \\
& \Delta G_{\mathrm{tr}}^{\circ}\left(\mathrm{Ag}^{+}\right)_{\mathrm{R} \rightarrow \mathrm{~S}} \tag{9}
\end{align*}
$$

where $\mathrm{C} 222=$ cryptand $2.2 .2, \mathrm{R}=\mathrm{DCE}$ as reference solvent, and $S=D C E(W)$ or PC. The second is based on Parker's TATB assumption (8):

$$
\begin{equation*}
\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Ph}_{4} \mathrm{As}^{+}\right)_{\mathrm{R} \rightarrow \mathrm{~S}}=\Delta G_{\mathrm{tr}}^{\circ}\left(\mathrm{BPh}_{4}^{-}\right)_{\mathrm{R} \rightarrow \mathrm{~S}} \tag{10}
\end{equation*}
$$

Experimental Section

1,2-Dichloroethane was an Aldrich Gold Label product (note: environmentally hazardous). Dibenzo-18-crown-6 (9), 18-crown-6 (9), and cryptand 2.2.2 (10) were products used previously. Electrolytic conductivities of 1,2-dichloroethane and 1,2 -dichloroethane saturated with water were $<1 \times 10^{-9}$ and $5.0 \times 10^{-9} \mathrm{~S} \mathrm{~cm}^{-1}$, respectively. Background electrolytic conductivities of the ligands ($0.011 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) in $\mathrm{DCE}(W)$ did not exceed $4 \times 10^{-7} \mathrm{~S} \mathrm{~cm}^{-1}$, with the exception of 18 -crown-6, which was $1.8 \times 10^{-6} \mathrm{~S} \mathrm{~cm}^{-1}$. These conductivities were deducted from those obtained with electrolytes. Silver, sodium, potassium, cesium, and thallium dichloropicrates were prepared by neutralizing the oxide or hydroxide with dichloropicric acid in water, filtering if necessary, and crystallizing the salts upon cooling. They were dried at atmospheric pressure for 3 h at 350 K . The purity by spectrophotometric dichloropicrate assay in water (molar absorption coefficient at $380 \mathrm{~nm}, 4.18 \times 10^{3}$) was $99.0-100.5 \%$. Silver perchlorate was that used previously (9). Extractions were performed by shaking both phases for $10-12 \mathrm{~h}$, separating the layers, and centrifuging. 18-Crown-6 was determined spectrophotometrically at 398 nm following exhaustive extraction with potassium dichloropicrate ($0.01 \mathrm{~mol} \mathrm{dm}^{-3}$) instead of picrate (11) into dichloromethane. The molar absorption coefficient of $18-\mathrm{cr}-6 \mathrm{KPiCl}_{2}$ varied from $5.40 \times$ 10^{3} to 5.00×10^{3}, concentrations being $0-1.5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. The total dichloropicrate content of the $\operatorname{DCE}(W)$ phase was determined spectrophotometrically upon taking an aliquot to dryness and making up to a given volume with water. Total solubilities of dichloropicrates were found in the same way as for picrates (12).

Table II. Extraction Parameters of Complexed Univalent Dichloropicrate Salts between Water and 1,2-Dichloroethane at 298 K

electrolyte	$\begin{gathered} \Lambda_{0}{ }^{a} / \\ \left(\mathrm{S} \mathrm{~mol}^{-1}\right. \\ \left.\mathrm{cm}^{2}\right) \end{gathered}$	$\begin{aligned} & K_{\mathrm{A}} \times \\ & 10^{-3} a / \\ & \left(\mathrm{mol}^{-1}\right. \\ & \left.\mathrm{dm}^{3}\right) \end{aligned}$	$\log _{\left(K_{\mathrm{ex}}\right)}$	$\begin{gathered} K_{\mathrm{f}}\left(\mathrm{LM}^{+}\right) / \\ \left(\mathrm{mol}^{-1} \mathrm{dm}^{3}\right) \end{gathered}$
$18-\mathrm{cr}-6 \mathrm{NaPiCl} 2$	46.94	7.7	7.00	
DB-18-cr-6NaPiCl 2	54.48	46.5	4.88	
$18-\mathrm{cr}-6 \mathrm{KPi}$	48.64	9.68	6.57	
18 -cr-6KPiCl ${ }_{2}$	$45.6{ }_{8}$	3.37	8.01	
DB-18-cr-6KPiCl ${ }_{2}$	48.22	$34{ }^{\text {b }}$	6.64	
$18-\mathrm{cr}-6 \mathrm{CsPiCl}_{2}$	50.18	2.00	6.83	$1.6 \times 10^{10} a, c$
$18-\mathrm{cr}-6 \mathrm{TlPiCl} 2$	51.44	2.07	8.63	
DB-18-cr-6TlPiCl ${ }_{2}$	45.84	4.75	6.78	
$18-\mathrm{cr}-6 \mathrm{AgPiCl} 2$	47.7	1.38	7.04	$(5.03 \pm 0.68) \times 10^{10 a}$
DB-18-cr-6AgPiCl ${ }_{2}$	40.15	4.09	5.45	$(5.28 \pm 2.11) \times 10^{8 a}$
C 222 Ag	49.9	0.40		$(1.85 \pm 0.36) \times 10^{20 a}$
PiCl_{2}				
$\mathrm{C} 222 A g$	$44.3{ }^{\text {d }}$	$<0.02^{\text {d }}$		$(3.03 \pm 0.38) \times 10^{20 d}$
PiCl_{2}				

[^1]All spectrophotometric measurements were made on a GCA McPherson EU-700 spectrophotometer. For potentiometric measurements an Orion 701A potentiometer was used in conjunction with the three-compartment cell described previously (13). One of the end compartments contained the $\mathrm{Ag} / \mathrm{AgClO}_{4}\left(0.0113 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ reference half-cell, while the middle compartment was filled with tetrabutylammonium perchlorate ($0.005 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) in DCE or DCE(W). Silver electrodes were platinum 4 -mm wire plated with silver. The potential of this electrode generally stabilized within 20 min , being reproducible to within $\pm 2 \mathrm{mV}$. No auxiliary electrolyte was used to maintain a high constant ionic strength, as this would introduce additional equilibria.

Results

Association Constants of Salts. Association constants of dichloropicrates are needed for evaluation of the various equilibrium constants. As concluded from conductance data, AgPiCl_{2} and CsPiCl_{2} are practically completely dissociated in their saturated solutions in W and in W(DCE) (Table I), as well as $\mathrm{C} 222 \mathrm{AgPiCl}_{2}$ in DCE (Table II). Salt concentrations were 5×10^{-5} to $3 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. To ensure complete complexation, an excess of ligand was maintained at 0.011 $\mathrm{mol} \mathrm{dm}{ }^{-3}$. Values of Λ_{0} and K_{A} entered in Table II were obtained from conductance data using the Fuoss and Kraus treatment (14). Ionic mobilities in DCE and in $\operatorname{DCE}(W)$ are
$\lambda_{0}\left(\mathrm{PiCl}_{2}-\right)=16.7$ (15) and 23.1 (15) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$, while $\Lambda_{0}\left(\mathrm{Et}_{4}-\right.$ $\left.\mathrm{NClO}_{4}\right)=75.9_{5} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $K_{\mathrm{A}}=7.8 \times 10^{5} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ in $\mathrm{DCE}(\mathrm{W})$. The salts $\mathrm{AgPiCl}_{2}, \mathrm{CsPiCl}_{2}$, and AgClO_{4} are too slightly dissociated in DCE and $\operatorname{DCE}(W)$ to yield Λ_{0} from the Fuoss and Kraus treatment. Therefore, Λ_{0} was approximated, using the product $\eta \lambda_{0}\left(\mathrm{M}^{+}\right)$in acetonitrile or PC to evaluate $\lambda_{0}\left(\mathbf{M}^{+}\right), \eta$ being viscosity. The above approximation introduces an uncertainty of $\pm 0.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in $\Delta G^{\circ}{ }_{\mathrm{s}}$ in Table I. Viscosities of DCE and DCE (W) at 298 K are 7.95×10^{-4} (16) and 7.58×10^{-4} (15) Pa s, respectively. Viscosity corrections were not made in the presence of ligands. The presence of a triple ion in DCE solutions of silver dichloropicrate was deduced from curvature in the Fuoss and Kraus plot. The conductance data therefore were analyzed according to the method of French and Roe (17), assuming λ_{0} (triple ion) $=8.0$ $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.

Solubility Product of Uncomplexed Salts. These are required for calculation of the free energy of transfer of MX. Table I lists the total solubility in the saturated solution and the solubility products of AgPiCl_{2} and CsPiCl_{2}. As the total solubilities of sodium, potassium, and thallium dichloropicrates in $\mathrm{DCE}(\mathrm{W})$ were $<1 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, these salts were not used. In this study, solid AgPiCl_{2} was found to be unsolvated in all the solvents taken, as well as CsPiCl_{2} in DCE and in $\mathrm{DCE}(\mathrm{W})$. The latter salt forms a stable dihydrate in water (18) and presumably also in W(DCE).

Complexation Constants of Silver Ion with Ligands in $D C E$ and in $D C E(W)$. Values of $K_{f}\left(\mathrm{LAg}^{+}\right)$in DCE or in $\mathrm{DCE}(\mathrm{W})$ entered in the last column of Table II were estimated from $a\left(\mathrm{Ag}^{+}\right)$obtained from the potential of the silver electrode in solutions of $(1-3) \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in AgPiCl_{2} and 4×10^{-3} to $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ in $18-\mathrm{cr}-6$ or C222. In PC $\log K_{\mathrm{f}}\left(\mathrm{C} 222 \mathrm{Ag}^{+}\right)$ $=16.54$ (10). Owing to the limited solubility of DB-18-cr$6 \mathrm{AgPiCl}_{2}$ in $\mathrm{DCE}(\mathrm{W})$, solutions were only 2.6×10^{-4} to $1 \times$ $10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ in AgPiCl_{2} and 1.9×10^{-3} to $0.03 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in DB-18-cr-6.

The total silver concentration, $C\left(\mathrm{AgPiCl}_{2}\right)$, in mixtures of L and $\mathrm{AgPiCl} \mathrm{L}_{2}$ is

$$
\begin{align*}
& C\left(\mathrm{AgPiCl}_{2}\right)=\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{AgPiCl}_{2}\right]+ \\
& {\left[\mathrm{LAg}^{+}\right]+\left[\mathrm{LAgPiCl}_{2}\right]} \tag{11}
\end{align*}
$$

while the total ligand concentration is

$$
\begin{align*}
& C(\mathrm{~L})=[\mathrm{L}]+\left[\mathrm{LAg}^{+}\right]+\left[\mathrm{LAgPiCl}_{2}\right] \approx \\
& {[\mathrm{L}]+C\left(\mathrm{AgPiCl}_{2}\right) } \tag{12}
\end{align*}
$$

Neglecting $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{AgPiCl}_{2}\right]$ in eq $11,\left[\mathrm{LAg}^{+}\right]$has been calculated from $C\left(\mathrm{AgPiCl}_{2}\right)$ using $K_{\mathrm{A}}\left(\mathrm{LAgPiCl}_{2}\right)$ from Table II, while [L] is found from eq 12. Values of $K_{\mathrm{f}}\left(\mathrm{LAg}^{+}\right)$in $\mathrm{DCE}(\mathrm{W})$ are 3-4 orders of magnitude greater than those in PC, the solvent in which the largest values previously have been reported (9). An attempt to ascertain $K_{f}\left(18-\mathrm{cr}-6 \mathrm{Cs}^{+}\right)$in $\mathrm{DCE}(\mathrm{W})$ by using the disproportionation reaction

$$
18-\mathrm{cr}-6 \mathrm{Ag}^{+}+\mathrm{Cs}^{+} \rightleftharpoons 18-\mathrm{cr}-6 \mathrm{Cs}^{+}+\mathrm{Ag}^{+}
$$

was unsuccessful, owing to the excessive complexation of Cs^{+} in the mixtures of $18-\mathrm{cr}-6, \mathrm{AgPiCl}_{2}$, and CsPiCl_{2}.

Partitioning of Ligands and of Uncomplexed Metal Dichloropicrates. The partition coefficient, $P(\mathrm{~L})$, at 298 K (eq 5) was estimated by partitioning 18 -cr- 6 between equal volumes of $\operatorname{DCE}(W)$ and $W(D C E)$. The aqueous phase was $(2.5-9.1) \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ in L . The resulting values of $P(\mathrm{~L})$ $=0.910 \pm 0.086$ is in excellent agreement with that derived from extraction data of $18-\mathrm{cr}-6 \mathrm{MPiCl} 2,0.923 \pm 0.169$ and the value 1.12, reported by Yoshio et al. (6). For 18 -cr-6, a value of $P(\mathrm{~L})_{\mathrm{PC} \rightarrow \mathrm{W}}=0.0481$ was calculated from $P(\mathrm{~L})_{\text {heradecane } \rightarrow \mathrm{PC}}$ $=8.11 \times 10^{-3}(19)$ and $\mathrm{P}(L)_{\text {hexadecane } \rightarrow \mathrm{W}}=3.9 \times 10^{-4}(20)$.

In a separate study, $\mathrm{AgPiCl}_{2}, 3.5 \times 10^{-3}$ to $0.013 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, or CsPiCl_{2}, (3.5-7.1) $\times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$, was partitioned between

Table III. Evaluation of $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{M}^{+}+\mathrm{PiCl}_{2}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{W}(\mathrm{DCE})}$

M^{+}	method ${ }^{\text {a }}$	$\underset{(\mathrm{kJ} \mathrm{~mol}}{\left.\Delta \mathrm{mol}^{\circ}\right)}$	M^{+}	method ${ }^{\text {a }}$	$\underset{\left(\mathbf{k} J \mathrm{~mol}^{-1}\right)}{\Delta G^{\circ}{ }^{\mathrm{tr}}}$
Ag^{+}	A	-38.1	Ag^{+}	D	-38.9
Ag^{+}	B	-39.8	Cs^{+}	A	-37.9
Ag^{+}	C	-38.7	Cs^{+}	B	-34.5

${ }^{a} \mathrm{~A}$, from partitioning of uncomplexed MPiCl_{2} alone between DCE (W) and W (DCE); B, from solubility products of MPiCl_{2} in DCE (W) and W(DCE) in Table II; C, from extraction of 18-cr$6 \mathrm{MPiCl}_{2}$, using eq 6 , see text; D , from extraction of DB-18-cr- $6 \mathrm{MPiCl}_{2}$ using eq 6 .
$\mathrm{W}(\mathrm{DCE})$ and $\mathrm{DCE}(\mathrm{W})$. The value of $\left[\mathrm{MPiCl}_{2}\right]$ in $\mathrm{DCE}(\mathrm{W})$ was calculated from the total amount of MPiCl_{2}, found spectrophotometrically, using $K_{\mathrm{A}}\left(\mathrm{MPiCl}_{2}\right)$ in Table I. Resulting values of the partition coefficient, $D /\left(\mathrm{mol}^{-1} \mathrm{dm}^{3}\right)$, were 1.46 ± 0.13 and 0.499 for AgPiCl_{2} and CsPiCl_{2}, respectively.

Partitioning of Complexed Metal Dichloropicrates. In this study, mixtures of $\mathrm{MPiCl}_{2}\left(2 \times 10^{-4}-1 \times 10^{-3} \mathrm{~mol}\right.$ $\left.\mathrm{dm}^{-3}\right)$ and 18-cr-6 ($5 \times 10^{-4}-7 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$) or DB-18-cr-6 ($0.002-0.020 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) in W (DCE) were shaken with equal volumes of $\operatorname{DCE}(W)$. Concentrations of the various species in the organic and aqueous phases were calculated using eqs 11 and $12\left(\mathrm{M}^{+}=\mathrm{Ag}^{+}\right)$and the charge balance relation

$$
\begin{equation*}
\left[\mathrm{LM}^{+}\right]+\left[\mathrm{M}^{+}\right]=\left[\mathrm{PiCl}_{2}^{-}\right] \tag{13}
\end{equation*}
$$

The dichloropicrates were considered as completely dissociated in the aqueous phase. The small amount of LM^{+} present in this phase was taken into consideration, using the stability constants in water tabulated by Izatt et al. (21). Instead of employing Frensdoff's two-parameter regression method (22) for evaluation of $K_{\text {ex }}$, we used the experimental conductometric value of $K_{\mathrm{A}}\left(\mathrm{LMPiCl}_{2}\right)$ in Table II to calculate $\left[\mathrm{LM}^{+}\right]$and $\left[\mathrm{LMPiCl}{ }_{2}\right]$ in the organic phase. It appears that only a $1: 118-\mathrm{cr}-6 \mathrm{Cs}^{+}$complex is present under our experimental conditions. Frensdorff (22) reported the presence of (18 -cr-6) $)_{2} \mathrm{Cs}^{+}$in methanol solutions containing excess 18 -cr6.

Table II lists values of $\log K_{\text {ex }}$ (average deviation, $0-0.11$ unit), $K_{\mathrm{A}}\left(\mathrm{LMPiCl}_{2}\right)$, and $K_{\mathrm{f}}\left(\mathrm{LM}^{+}\right)$, solvents being DCE and DCE(W). Several extraction experiments between water and benzene were carried out in the present study with the above dichloropicrates. The following values of $\log K_{\text {ex }}$ were obtained: 18 -cr- $6 \mathrm{Na}^{+}, 6.99$; DB-18-cr- $6 \mathrm{Na}^{+}, 5.05 ; 18$-cr- $6 \mathrm{~K}^{+}$, 8.47; and DB-18-cr-6K ${ }^{+}$, 6.27.

Discussion

Sum of Gibbs Free Energies of Transfer of Uncomplexed Cation and Anion. Considering only the effect of dielectric permittivity, ϵ (Born effect), on each of the quantities on the right-hand side of eq 6 , one concludes that $K_{\text {ex }}$ is independent of ϵ of the two immiscible solvents. For simplicity, dielectric saturation effects were ignored. However, a large systematic increase in K_{er} with ϵ was observed in the extraction of alkali-metal picrates between water and various nitrobenzene-toluene mixtures in the presence of DB-18-cr-6 (4). In fact, a good linear correlation was reported by Tôei et al. (23) between the distribution ratio of $18-\mathrm{cr}-6 \mathrm{KPi}$ and Dimroth's E_{T} values of the organic solvents, excluding alcohols.

Agreement in values of $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Ag}^{+}+\mathrm{PiCl}_{2}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{W}(\mathrm{DCE})}$ in Table III attests to the validity of eq 6 . The small difference of $3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Cs}^{+}+\mathrm{PiCl}_{2}^{-}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{W}(\mathrm{DCE})}$ in Table III presumably corresponds to the free energy of hydration of solid CsPiCl_{2} to form the dihydrate.

Single Ion Free Energies of Transfer. As expected, nonelectrostatic free energies of transfer of ions from DCE into $\operatorname{DCE}(W)$ generally are small, indicative of, at most, a weak ionic hydration. The magnitude of $\Delta G^{\circ}{ }_{\mathrm{tr}}(\mathrm{i})_{\mathrm{DCE}}(\mathrm{W}) \rightarrow \mathrm{PC}$

Table IV. Gibbs Standard Free Energy of Transfer of Uncharged Ligands, Ion Pairs, and Single Ions on the Molar Scale (kJ mol ${ }^{-1}$) at 298 K

species	DCE \rightarrow DCE (W)	DCE $(W) \rightarrow$ PC	$\mathrm{PC} \rightarrow \mathrm{W}$	DCE $(W) \rightarrow W$	DCE \rightarrow W
Ag^{+}	$-1.22^{\text {a }}$	$-21.2^{\text {a }}$	$-21.7,^{b}-18.0{ }^{c}$	-42.9	-44.1
AgPiCl_{2}	$-1.1{ }^{\text {e }}$	$-8.95{ }^{e}$			
$18-\mathrm{cr}-6 \mathrm{Ag}^{+}$		6.56	2.68	9.23^{j}	
DB-18-cr-6Ag ${ }^{+}$		1.52	$19.6{ }^{\text {b }}$	21.0^{j}	
Cs^{+}	4.08	-36.3	$-5.3_{6},{ }^{\text {b }} 1.7^{c}$	$-41.7^{i, j}$	$-37.7{ }^{\text {, }}$ - $23.0{ }^{\text {d }}$
18 -cr-6Cs ${ }^{+}$		2.8	7.6	$10.4{ }^{j}$	
$\mathrm{PiCl}_{2}{ }^{-}$	$-2.0{ }^{\prime}$	-16.0 ${ }^{\prime}$	19.8	3.8	1.8
Pi		-13.3	6.3	$-7.0^{h j}$	$-2.9{ }^{\text {d }}$
18-cr-6		7.27	-7.50	-0.23	
DB-18-cr-6		6.20	16.5	$22.76^{\text {j,k }}$	

${ }^{a}$ From $K_{f}\left(C 222 A g^{+}\right)$in DCE, $\operatorname{DCE}(W)$ (Table II), or PC in eq $9 .{ }^{b}$ Reference 9. ${ }^{c}$ Abraham, M. H. Monatsch. Chem. 1979, 110, 517. ${ }^{d}$ From electrostatic model; ${ }^{26}$ see text. ${ }^{e} \Delta G^{\circ}{ }_{\mathrm{tr}}(\mathrm{MX})_{\mathrm{R} \rightarrow \mathrm{s}}=R T \ln 10\left\{\log \left[K_{\mathrm{A}}(\mathrm{MX})_{\mathrm{R}} / K_{\mathrm{A}}(\mathrm{MX})_{\mathrm{s}}\right]\right\}+\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{X}^{-}\right)_{\mathrm{R} \rightarrow \mathrm{s}}+\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{M}^{+}\right)_{\mathrm{R} \rightarrow \mathrm{s}} . f \Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{PiCl}_{2}\right)_{\mathrm{R} \rightarrow \mathrm{s}}=$ $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Ag}^{+}+\mathrm{PiCl}_{2}^{-}\right)_{\mathrm{s} \rightarrow \mathrm{R}}-\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Ag}^{+}\right)_{\mathrm{R} \rightarrow \mathrm{s} .}{ }^{8} \Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{M}^{+}\right)_{\mathrm{R} \rightarrow \mathrm{s}}=\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{M}^{+}+\mathrm{PiCl}_{2}\right)_{\mathrm{R} \rightarrow \mathrm{s}}-\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{PiCl}_{2}\right)_{\mathrm{R} \rightarrow \mathrm{s}}{ }^{h}$ From comparison of K_{ex} of $18-\mathrm{cr}-$ 6 KPi with that of $18-\mathrm{cr}-6 \mathrm{KPiCl}_{2}$ using eq $6 .{ }^{i} \mathrm{From}$ partitioning of CsPiCl_{2} between $\mathrm{DCE}(\mathrm{W})$ and W (DCE) (Table III); see text. ${ }^{j}$ Transfer to W(DCE). ${ }^{k}$ Reference 30.
of $\mathrm{Cs}^{+}, \mathrm{Pi}^{-}$, and $\mathrm{PiCl}_{2}{ }^{-}$in Table IV, $-36.3,-13.3$, and -16.0 kJ mol^{-1}, is mainly attributed to the Born dielectric permittivity effect, $-32.7,-13.8$, and $-13.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Ionic radii were taken as 0.169 (24), 0.40 , and 0.40 nm . Silver ion appears to be nonelectrostatically solvated in DCE(W) to a considerable extent, the Born effect going from DCE(W) to PC amounting to $-43.1 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}(r=0.126 \mathrm{~nm}$ (24)) as compared to $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Ag}^{+}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{PC}}=-21.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in Table IV.

We next consider free energies of transfer of ions from organic solvents to water. The reason that $\Delta G^{\circ}{ }_{\mathrm{tr}}{ }^{-}$ $\left(\mathrm{Cs}^{+}\right)_{\mathrm{DCE}} \rightarrow \mathrm{W}(\mathrm{DCE})$ in Table IV is $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more negative than that from DCE to pure water, as derived by Abraham and Liszi (25) from an electrostatic model in the organic solvent and hydration energy, could be due to a nonelectrostatic solvation effect on Cs^{+}in W(DCE). An accurate evaluation of $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{Cs}^{+}, \mathrm{Ag}^{+}\right)_{\mathrm{W}(\mathrm{DCE}) \rightarrow \mathrm{W}}$ would entail an elaborate study, similar to that conducted by Popovych (26) between water and water-ethanol mixtures.

Several researchers note that the extractability of a potassium salt of a substituted phenoxide (27) or halide (28) decreases with increasing hydration energy of the anion. As expected, $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{X}^{-}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{W}}$ is in the order $\mathrm{Cl}^{-}<4$-nitrophenoxide < anilinonaphthalenesulfonate $<\mathrm{Pi}^{-}<\mathrm{PiCl}_{2}{ }^{-}$, being -45.2 (29), $-25.5(29),-22.3(30),-7.0$, and $3.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Table IV). Values of $\Delta G^{\circ}{ }_{t r}$ of chloride, a typical "hard" ion, from CHCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to water, -63.3 and $-70.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, have been calculated from the empirical relation

$$
\begin{align*}
& \Delta G_{\mathrm{tr}}^{\circ}\left(\mathrm{Cl}^{-}\right)_{\mathrm{S} \rightarrow \mathrm{~W}} /(\mathbf{k J ~ m o l} \\
& \tag{14}\\
& \\
& \left.\quad(40.5 \pm 4.0)+(2.85 \pm 0.15) \Delta G_{\text {distribution }}^{\circ}\right)
\end{align*}
$$

derived by Marcus et al. (31) for partitioning of DB-18-cr6 KCl between an organic solvent and water. Experimental values of $\Delta G^{\circ}{ }_{\text {distribution }}$ are in ref 31. Dichloropicrate is hydrophobically solvated in water to a greater extent than picrate, $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{PiCl}_{2}--\mathrm{Pi}^{-}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \mathrm{W}}=10.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Table IV). This plays an important role in the favorable extractions of salts of substituted picrates in the presence of crown ethers. On the basis only of a smaller London dispersion interaction (32) anticipated between the organic solvent and PiCl_{2} - than with Pi^{-}, a negative value of $\Delta G^{\circ}{ }_{\mathrm{tr}}\left(\mathrm{PiCl}_{2}-\mathrm{Pi}^{-}\right)_{\mathrm{DCE}(\mathrm{W}) \rightarrow \text { w would }}$ be expected. Delocalization of the charge in $\mathrm{PiCl}_{2}{ }^{-}$is suppressed as a consequence of the nitro groups being perpendicular to the ring.

Registry Numbers Supplied by Author. 1,2-Dichloroethane, 107-06-2; propylene carbonate, 108-32-7; dichloropicric acid, 19046-87-8; 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6), 17455-13-9; 2,3,11,12-dibenzo-1,4,7,10,13,16-hexaoxacyclooctadeca-2,11-diene (dibenzo-18-crown-6), 14187-32-7; 4,7,13,16,21,24-hexaoxa-1,10-
diazabicyclo[8.8.8] hexacosane (cryptand 2.2.2), 23978-09-8; silver perchlorate (hydrate), 14242-05-8.

Literature Cited

(1) Yamane, M.; Iwachido, T.; Tôei, K. Bull. Chem. Soc. Jpn. 1971, 44, 745.
(2) Motomizu, S.; Tôei, K.; Iwachido, T. Bull. Chem. Soc. Jpn. 1969, 42, 1006.
(3) Sekine, T.; Dyrssen, D. Anal. Chim. Acta 1969, 47, 642.
(4) Danesi, P.R.; Meider-Gorican, H.;Chiarizia, R.; Scibona, G.J.Inorg. Nucl. Chem. 1975, 37, 1479.
(5) Makrlifk, E.; Hálová, J.; Kyrš, M. Collect. Czech. Chem. Commun. 1984, 49, 39 :
(6) Yoshio, M.; Noguchi, H. Anal. Lett. 1982, A15, 1197 and references therein.
(7) Lejaille, M. F.; Livertoux, M. H.; Guidon, G.; Bessière, J. Bull. Soc. Chim. Fr. 1978, I-373.
(8) Alexander, R.; Parker, A. J. J. Am. Chem. Soc. 1967, 89, 5549.
(9) Kolthoff, I. M.; Chantooni, M. K., Jr. Anal. Chem. 1980, 52, 1039.
(10) Chantooni, M. K., Jr.; Kolthoff, I. M. J. Solution Chem. 1985, 14, 1.
(11) Kolthoff, I. M. Can. J. Chem. 1981, 59, 1548.
(12) Chantooni, M. K., Jr.; Kolthoff, I. M.; Roland, G. Aust. J. Chem. 1983, 36, 1753.
(13) Kolthoff, I. M.; Chantooni, M. K., Jr. J. Am. Chem. Soc. 1965, 87, 4428.
(14) Fuoss, R. M.; Kraus, C. A. J. Am. Chem. Soc. 1933, 55, 476.
(15) Chantooni, M. K., Jr.; Kolthoff, I. M. J. Solution Chem. 1992, 21, 683.
(16) D'Aprano, A.; Fuoss, R. M. J. Solution Chem. 1975, 4, 175.
(17) French, C. M.; Roe, I. G. Trans. Faraday Soc. 1953, 49, 314.
(18) Wang, Wen-Ji; Chantooni, M. K., Jr.; Kolthoff, I. M. J. Coord. Chem. 1990, 22, 43.
(19) Chantooni, M. K., Jr.; Kolthoff, I. M. J. Solution Chem. 1988, 17, 175.
(20) Chantooni, M. K., Jr.; Kolthoff, I. M. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 7245.
(21) Izatt, R. M.; Terry, R. E.; Haymore, B. L.; Hansen, L. D.; Dalley, N. K.; Avondet, A. G.; Christensen, J. J. J. Am. Chem. Soc. 1976, 98, 7620.
(22) Frensdorff, H. K. J. Am. Chem. Soc. 1971, 93, 600.
(23) Iwachido, T.; Minami, M.; Naito, H.; Tôei, K. Bull.Chem. Soc. Jpn. 1982, 55, 2378.
(24) Pauling, L. The Nature of the Chemical Bond, 2nd ed.; Cornell University Press: Ithaca, NY, 1940; p 346.
(25) Abraham, M. H.; Liszi, J. J. Inorg. Nucl. Chem. 1981, 43, 143.
(26) Popovych, O.; Dill, A. J. Anal. Chem. 1969, 41, 456.
(27) Buncel, E.; Shin, H. S.; Bannard, R. A.; Purdon, J. G. Can. J. Chem. 1984, 62, 926.
(28) Brändström, A. Pure Appl. Chem. 1982, 54, 1769.
(29) Antoine, J. P.; de Aguirre, I.; Janssens, F.; Thyrion, F. Bull. Soc. Chim. Fr. II 1980, 5, 6, 207.
(30) Kina, K.; Shiraishi, K.; Ishibashi, N. Bunseki Kagaku 1978, 27, 291.
(31) Marcus, Y.; Pross, E.; Hormadaly, J. J. Phys. Chem. 1980, 84, 2078.
(32) Grunwald, E.; Price, E. J. Am. Chem. Soc. 1964, 86, 4517.

Received for review December 29, 1992. Revised April 16, 1993. Accepted May 17, 1993. I.M.K. thanks the National Science Foundation for Grant CHE-8401840 for their generous support of this study.

[^0]: † Deceased March 1993.
 ${ }^{\mathrm{t}}$ Deceased.

[^1]: ${ }^{a}$ Solvent $\left.\mathrm{DCE}(\mathrm{W})\right)^{b}$ In addition, $K^{f}($ triple ion $) \approx 7 \times 10^{1} \mathrm{~mol}^{-1}$ $\mathrm{dm}^{3} .^{\circ}$ Calculated from eq 7, taking $D=0.50 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$ for uncomplexed CsPiCl_{2}. ${ }^{d}$ Solvent, water-free DCE.

